4 Artelys

OPTIMIZATION SOLUTIONS

Artelys Knitro 11.0

SOCP, API, Preconditioner and much more!

September 12, 2018

www.artelys.com

COMPANY OVERVIEW

▲ Artelys

We specialize in optimization, decision-support, modeling and deliver efficient solutions to complex business problems.

▲ Domains of expertise

- l Energy
- Transport & Logistic
- l Defense
- Numerical and Combinatorial Optimization

▲ Services

- Auditing & Consulting
- On demand software
- Distribution and support of numerical optimization tools

l Training

OPTIMIZATION SOLUTIONS NUMERICAL OPTIMIZATION TOOLS

⊿ KNITRO

Artelys

Industry leading solver for very large, difficult nonlinear optimization problems (NLP, MINLP)

I FICO Xpress Optimization Suite

- High performance linear, quadratic and mixed integer programming solver (LP, MIP, QP)
- ▲ Artelys Kalis
 - Object-oriented environment to model and solve problems with constraints programming techniques

Comprehensive modeling language for Mathematical Programming

RTELYS KALIS[™]

KNĪTR

ARTELYS KNITRO: OVERVIEW

KNITRQ

▲ Background

- Created in 2001 by Ziena Optimization
 - → Spin-off of Northwestern University
- Now developed and supported by Artelys

▲ Key features

- Efficient and robust solution on large scale problems ($\sim 10^5$ variables)
- Four active-set and interior-point algorithms for continuous optimization
- MINLP algorithms and complementarity constraints for discrete optimization
- Many extra features based on customer feedbacks or project requirements
- Parallel multi-start method for global optimization.
- Easy to use and well documented: Online documentation

Features	Interior- Point/Direct	Interior- Point/Conjugate- Gradient	Sequential Linear Quadratic Programming	Sequential Quadratic Programming	
Large scale	++ (sparse)	++ (sparse or dense)	+		
Expensive evaluations			+	++	
Warm-start	+	+	++	++	
Least square problems	++	++	+	+	
Globalization technique	Line-search/Trust- region	Trust-region	Trust-region	Line-search/Trust- region	
Linear solver	Lapack QR or MA27 or MA57 or MKL PARDISO or MA86 or MA97				
LP solver	-	- Clp (incl.) or Xpress/Cplex (not incl.)		ss/Cplex (not incl.)	
QP solver	-	-	-	IP/Direct or IP/CG or SLQP	

▲ Widely used in academia...

OPTIMIZATION SOLUTIONS

- US Top Universities: Berkeley, Columbia, Harvard, MIT, Stanford...
- Worldwide Top Universities: ETH Zürich, LSE, NUS (Singapore), Melbourne...

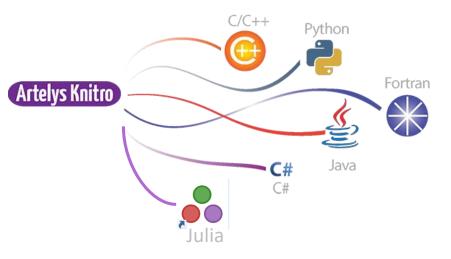
... and industry

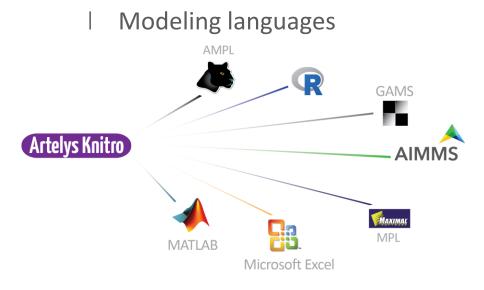
▲ Artelys

- Economic consulting firms
- I Financial institutions
- Mechanical engineering companies
- Oil & Gas companies
- Regulator & Policy maker
- Software developers
 - → Used as a third-party optimization engine

More than 400 institutions in over 40 countries rely on Artelys Knitro

ARTELYS KNITRO: OVERVIEW


ARTELYS KNITRO: OVERVIEW


▲ Interfaces

▲ Artelys

Programming languages

OPTIMIZATION SOLUTIONS

▲ Supported platforms

Windows 32-bit, 64-bit

RELEASE 11.0

▲ Artelys Knitro 11.0 new features:

- New SOCP Algorithm
 - → Detect conic constraints from quadratic structures
 - → Designed for general nonlinear problems with SOC constraints
- New C API
 - └→ Easier to use
 - → Allows passing problem structure (eg linear, quadratic, **conic constraints**) with dedicated API and without providing Hessian
- Preconditioning for all classes of problems
 - → Preconditioning can now be used for problems with equality and inequality constraints
- New parallel linear solvers
 - → HSL MA86 (non-deterministic) and MA97 (deterministic)
 - → Speedups on large scale problem with shared memory parallelism
- Performance improvements
 - → Very large speedup on QCQPs (including nonlinear QCQP)
 - → Speedups on general convex problems
 - → Speedups on MINLP algorithms

RELEASE 11.0

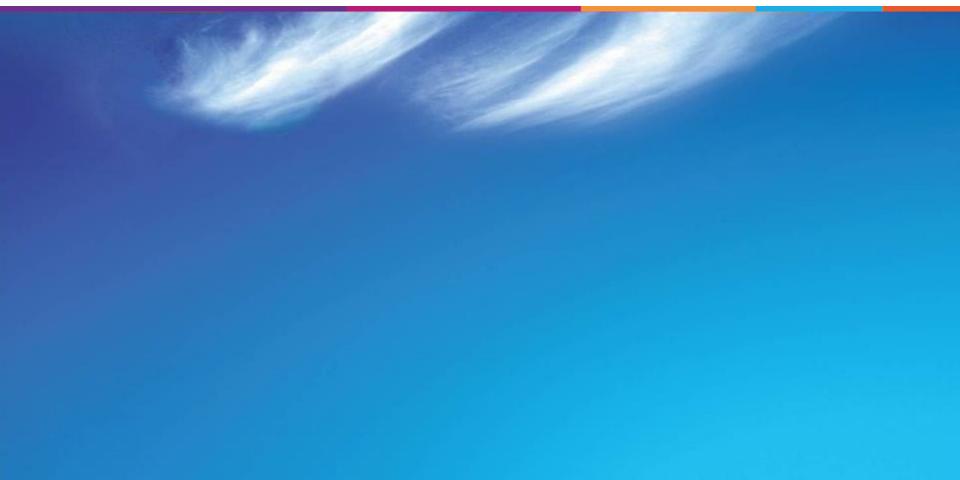
▲ Artelys Knitro 11.0 new features:

- New SOCP Algorithm
 - → Detect conic constraints from quadratic structures
 - → Designed for general nonlinear problems with SOC constraints
- New C API

- └→ Easier to use
- → Allows passing problem structure (eg linear, quadratic, **conic constraints**) with dedicated API and without providing Hessian
- Preconditioning for all classes of problems
 - → Preconditioning can now be used for problems with equality and inequality constraints
- New parallel linear solvers
 - → HSL MA86 (non-deterministic) and MA97 (deterministic)
 - → Speedups on large scale problem with shared memory parallelism
- Performance improvements
 - → Very large speedup on QCQPs (including nonlinear QCQP)
 - → Speedups on general convex problems
 - → Speedups on MINLP algorithms

RELEASE 11.0

- ▲ Artelys Knitro 11.0 new features:
 - New SOCP Algorithm
 - → Detect conic constraints from quadratic structures
 - → Designed for general nonlinear problems with SOC constraints
 - New C API

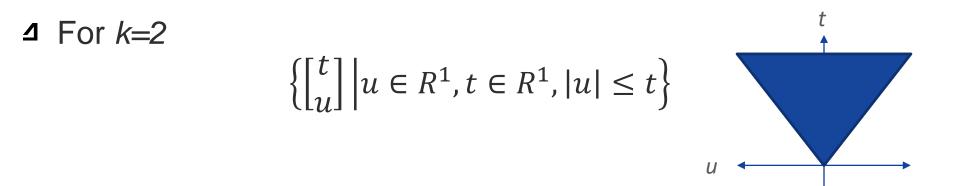

- 🛏 Easier to use
- → Allows passing problem structure (eg linear, quadratic, **conic constraints**) with dedicated API and without providing Hessian
- Preconditioning for all classes of problems
 - → Preconditioning can now be used for problems with equality and inequality constraints
- New parallel linear solvers
 - → HSL MA86 (non-deterministic) and MA97 (deterministic)
 - → Speedups on large scale problem with shared memory parallelism
- Performance improvements
 - → Very large speedup on QCQPs (including nonlinear QCQP)
 - → Speedups on general convex problems
 - → Speedups on MINLP algorithms

RELEASE 11.0

▲ Artelys Knitro 11.0 new features:

- New SOCP Algorithm
 - → Detect conic constraints from quadratic structures
 - → Designed for general nonlinear problems with SOC constraints
- New C API
 - └→ Easier to use
 - → Allows passing problem structure (eg linear, quadratic, **conic constraints**) with dedicated API and without providing Hessian
- Preconditioning for all classes of problems
 - → **Preconditioning** can now be used for problems with **equality** and inequality constraints
 - New parallel linear solvers
 - → HSL MA86 (non-deterministic) and MA97 (deterministic)
 - → Speedups on large scale problem with shared memory parallelism
 - Performance improvements
 - → Very large speedup on QCQPs (including nonlinear QCQP)
 - → Speedups on general convex problems
 - → Speedups on MINLP algorithms

SOCP


▲ Standard Second Order Cone (SOC) of dimension k is

$$\left\{ \begin{bmatrix} t \\ u \end{bmatrix} \middle| u \in \mathbb{R}^{k-1}, t \in \mathbb{R}^1, ||u|| \le t \right\}$$

⊿ For *k*=1

Artelys OPTIMIZATION SOLUTIONS

 $\{t \mid t \in R^1, 0 \leq t\}$

△ Set u = Ax + b and $t = c^T x + d$ to create general second order cone constraints of form

$$\|Ax + b\| \le c^T x + d$$

▲ Second Order Cone Program (SOCP):

s.t.
$$\begin{split} \min_{x} f^{\mathrm{T}} x\\ \|A_{i}x + b_{i}\| &\leq c_{i}^{\mathrm{T}} x + d_{i}, \quad i=1..\mathsf{m}\\ G^{T} x + h &\leq 0 \end{split}$$

Convex QP and QCQP (and more) can be converted to SOCP

September 12, 2018

APPLICATIONS

▲ Applications

- Finance: portfolio optimization with loss risk constraints
- Facility location (e.g. antenna placement in wireless network)
- Robust optimization (under ellipsoid uncertainty)
- Robust least squares
- Grasping force optimization
- FIR filter design
- Truss design
- See Applications of Second-Order Cone Programming, Lobo, Vandenberghe, Boyd, Lebret

▲ Quadratic constraint

$$\begin{aligned} x^T Q x + 2q^T x + r &\leq 0 \\ \left\| Q^{1/2} x + Q^{-1/2} q \right\|^2 + r - q^T Q^{-1} q &\leq 0 \\ \left\| Q^{1/2} x + Q^{-1/2} q \right\| &\leq (q^T Q^{-1} q - r)^{1/2} \end{aligned}$$

▲ Rotated cone constraint

$$\begin{aligned} x^{T}x &\le yz, y \ge 0, z \ge 0\\ 4x^{T}x + y^{2} + z^{2} &\le 4yz + y^{2} + z^{2}\\ \sqrt{4x^{T}x + (y - z)^{2}} &\le y + z\\ & \left\| \frac{2x}{y - z} \right\| &\le y + z \end{aligned}$$

▲ Knitro identifies the constraints in form

$$\sum_{i=1}^{n} a_i x_i^2 \le a_0 x_0^2, \ x_0 \ge 0$$

and

$$\sum_{i=2}^{n} a_i x_i^2 \le a_0 x_0 x_1, \ x_0, x_1 \ge 0.$$

as second order cone constraints, and internally puts them into the standard form

▲ It also allows to input constraints in form $||Ax + b|| \le cx + d$ directly via the struct 'L2norm'

Currently, it does second order conic constraint identification on the presolved problem ▲ Knitro conic solver moves beyond SOCP (more general)

$$\begin{split} \min_{x} f^{\mathrm{T}} x\\ \text{s.t.} \quad & \|A_{i}x + b_{i}\| \leq c_{i}^{\mathrm{T}} x + d_{i}\\ & G^{T} x + h \leq 0 \end{split}$$

$$\min_{x} f(x)$$

s.t. $||A_i x + b_i|| \le c_i^{\mathrm{T}} x + d_i$
 $h(x) = 0$
 $g(x) \le 0$

- Handle any nonlinear problem with second order cone constraints, including nonconvex
- Extension of existing Knitro Interior/Direct algorithm via new option

bar_conic_enable=1

▲ Artelys

OPTIMIZATION SOLUTIONS

It generalizes the operations on the slack variables in the existing Knitro/Direct algorithm using the algebra associated with second order cones

min f(x) $H(x) := Mx + v = \begin{pmatrix} A_1 \\ \dots \\ c_t \\ A \end{pmatrix} x + \begin{pmatrix} b_1 \\ \dots \\ d_t \\ d_t \end{pmatrix}$ $g(x) \leq 0$ $H(x) \in K.$ $\nabla f(x) + A^T \lambda - M^T w = 0$ $g(x) \le 0, \lambda \ge 0$ $H(x) \in K, w \in K$ min f(x) $s := -g(x), \ s \ge 0$ $g(x).\lambda = 0$ $y := H(x), y \in K.$ $(x) \circ w = 0$

1 Can always write the cone constraint as a general NLP constraint:

$$||u|| \le t \to \sqrt{u_1^2 + u_2^2 + \ldots + u_{k-1}^2} \le t$$

^{**⊿**} This does not work well in general; constraint is non-differentiable as $||u|| \rightarrow 0$

It is not uncommon that $||u|| \rightarrow 0$ at the optimal solution

- ^{**⊿**} Can square the constraint, but then it is non-convex and degenerate at the solution if $||u|| \rightarrow 0$
- Can try to smooth or relax/perturb these constraints to avoid these issues, e.g.

$$u_1^2 + u_2^2 + \ldots + u_{k-1}^2 + \epsilon^2 \le t$$

1 This works better sometimes but is still not robust or nearly as effective as dealing with them directly

Artelys OPTIMIZATION SOLUTIONS

▲ Consider the simple example:

Artelys OPTIMIZATION SOLUTIONS

 $\min_{x} 0.5x_1 + x_2 \\ \text{s.t.} \ |x_1| \le x_2$

- The optimal solution is at (0,0)
- NLP form without conic detection can't get dual feasible
- QCQP form (non-convex):

 $\min_{x} 0.5x_1 + x_2$
s.t. $x_1^2 \le x_2^2, x_2 \ge 0$

solves in 50 iterations

- Conic formulation solves in 4 iterations
- In fact, development of the conic extension started after having troubles with such a problem

Steiner_model / Steiner_model_100

September 12, 2018

▲ Steiner tree problem Steiner_model_100.nl

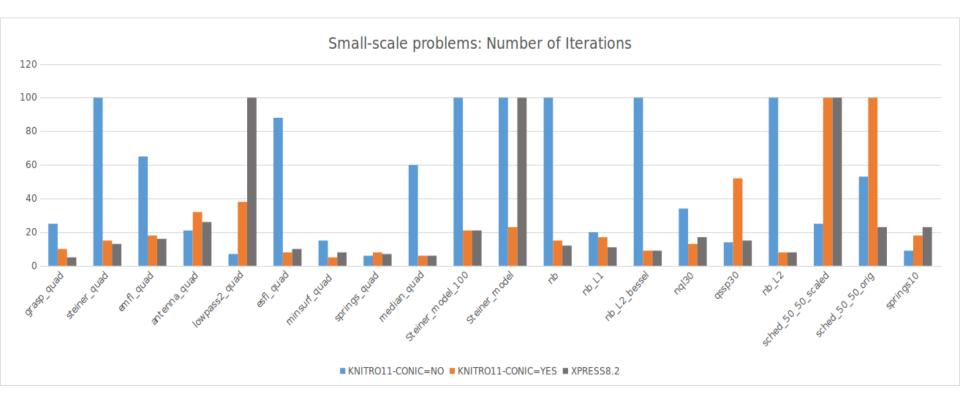
The problem is identified as a QCQP.

▲ Knitro 10.3 (default)

```
Knitro identified 700 second order cone constraints (after the presolve).
Iter Objective
                       FeasError OptError ||Step|| CGits
       4.624889e+000 5.940e+000
      \cap
     10
       4.971916e+000 2.303e-002 1.327e-001 2.667e+000
         9970 4.679613e+000 5.991e-008 5.960e-002 5.020e-006
                                                                   11
         4.679613e+000 5.991e-008 5.962e-002 4.837e-006
   9980
                                                            11
   9990 4.679614e+000 5.991e-008 5.983e-002 4.691e-006
                                                             6
  10000
         4.679614e+000 5.991e-008 5.996e-002 4.397e-006
                                                             6
EXIT: Iteration limit reached. Current point is feasible.
Final Statistics
Final objective value
                    = 4.67961355976477e+000
Final feasibility error (abs / rel) = 5.99e-008 / 1.01e-008
Final optimality error (abs / rel) = 6.00e-002 / 6.00e-002
# of iterations
                                     10000
# of CG iterations
                                     94362
                                _
# of function evaluations
                                          0
                                =
 of gradient evaluations
                                          0
                                _
# of Hessian evaluations
                                          0
                                =
                                    1156.271 ( 1117.266 CPU time)
Total program time (secs)
                                =
Time spent in evaluations (secs)
                                       0.000
                                =
```

NLP FORM VS. CONIC FORM

▲ Steiner tree problem Steiner_model_100.nl

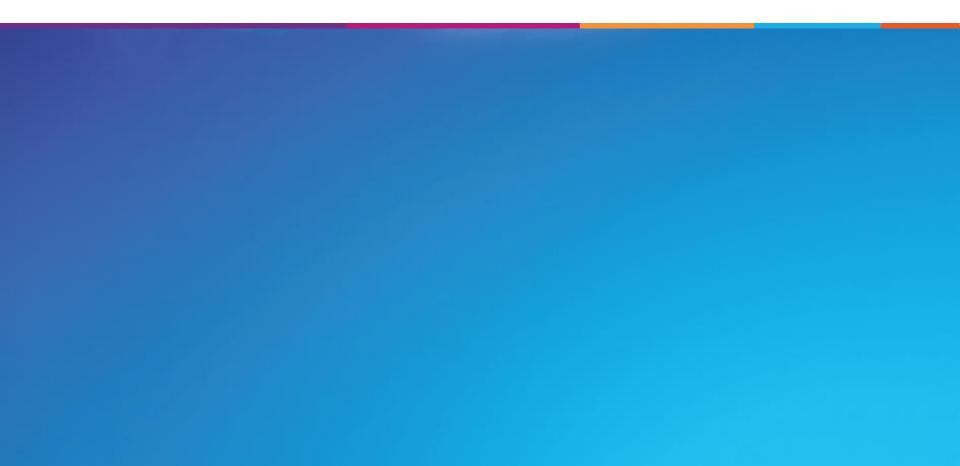

The problem is identified as a QCQP.

tified 700 second order cone constrain

Iter	Objective	FeasError	OptError	Step	CGits		
0	4.624889e+000	5.940e+000					
10	4.771003e+000	6.862e-009	2.415e-004	1.494e+000	0		
20	4.678018e+000	4.542e-011	1.146e-006	4.050e-002	0		
21	4.677631e+000	2.029e-011	4.862e-007	2.253e-002	0		
EXIT: LO	cally optimal	solution f	found.				
'inal Sta	tistics						
	·						
-	ective value						
Final feasibility error (abs / rel) = 2.03e-011 / 3.42e-012 Final optimality error (abs / rel) = 4.86e-007 / 4.86e-007							
_	—	r (abs / r		860-007 / 4	1.860-007		
of iter		=	= 21				
	terations		= 0				
	tion evaluations		0				
-	lient evaluations		= 0				
	ian evaluations		• 0	<i>с ,</i> , , , ,			
	gram time (secs)				188 CPU time)		
		(secs) =	= 0.000				

NLP FORM VS. CONIC FORM

Compare Knitro (with and without special treatment of cone constraints) and Xpress on small SOCP models (iteration comparison)


▲ Artelys

OPTIMIZATION SOLUTIONS

- Can utilize Knitro branch-and-bound algorithm to solve mixedinteger SOCP
- ▲ ... or more general mixed-integer models with SOC constraints

$$\min_{x,y} f(x,y)$$

s.t. $||A_ix + b_i|| \le c_i^T x + d_i, \quad i=1..k$
$$h(x,y) = 0$$

$$g(x,y) \le 0$$

$$y \text{ integer}$$

NEW KNITRO 11.0 API

- ▲ Build optimization model piece-by-piece
 - More flexible

▲ Artelys

Easier problem modification

OPTIMIZATION SOLUTIONS

- More extendable (to multi-objective, statistical learning models, etc.)
- ▲ Identify special structures (e.g. linear, quadratic, conic, etc)
 - Identify more problem types (QCQP, SOCP, etc)
 - Potential for more extensive presolve operations
 - Faster (potentially parallel) evaluations of stored structures
- ▲ Can combine exact and approximate derivatives

C EXAMPLE

Artelys | OPTIMIZATION SOLUTIONS

$$\min f(x) + (1 - x_0)^2$$

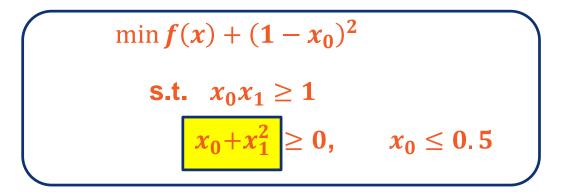
s.t. $x_0 x_1 \ge 1$
 $x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5$

C EXAMPLE

min $f(x) + (1 - x_0)^2$ s.t. $x_0 x_1 \ge 1$ $x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5$

// Create a new Knitro solver instance.
KN_new(&kc);

// Add variables and constraints and set their bounds
KN_add_vars(kc, 2, NULL);


KN_set_var_upbnd(kc, 0, 0.5);

KN_add_cons(kc, 2, NULL);
double cLoBnds[2] = {1.0, 0.0};
KN_set_con_lobnds_all(kc, cLoBnds);

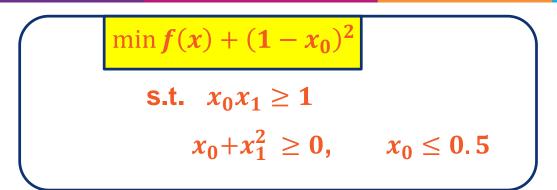
▲ Artelys |

OPTIMIZATION SOLUTIONS

C EXAMPLE

// Add linear term x0 in the second constraint
indexVar = 0; coef = 1.0;
KNL add_con_linear_struct_one_(ks_1_1_8_index)/ar_8_coe

KN_add_con_linear_struct_one (kc, 1, 1, &indexVar, &coef);


// Add quadratic term x1^2 in the second constraint
indexVar1 = 1; indexVar2 = 1; coef = 1.0;

KN_add_con_quadratic_struct_one (kc, 1, 1, &indexVar1, &indexVar2, &coef);

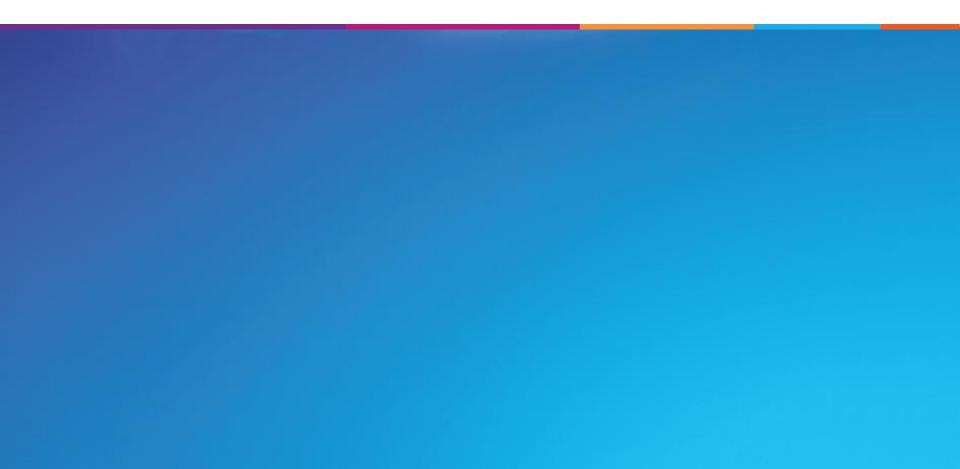
▲ Artelys

OPTIMIZATION SOLUTIONS

C EXAMPLE

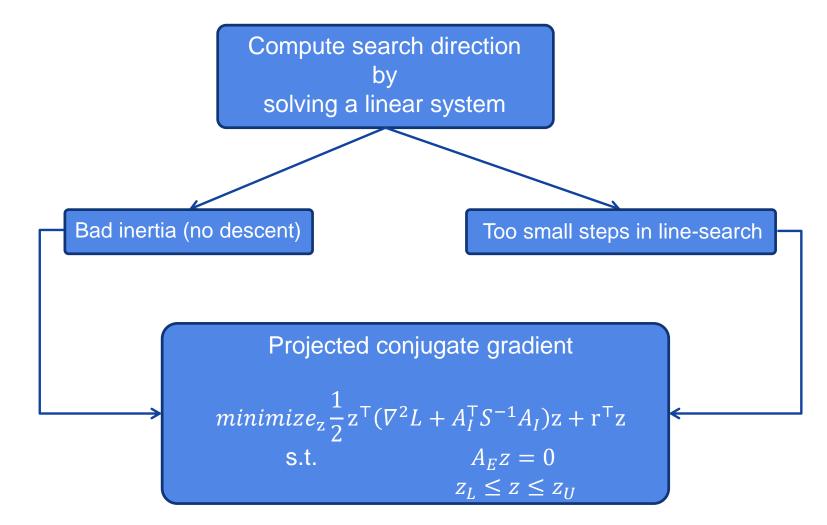
// Pointer to structure holding information for callback
CB_context *cb;

// Add a callback function "callbackEvalF" to evaluate the nonlinear // (non-quadratic) part of the objective KN_add_eval_callback (kc, KNTRUE, 0, NULL, f(x), &cb);


// Add the constant, linear, and quadratic terms in the objective.
KN_add_obj_constant(kc, 1.0);
indexVar = 0; coef = -2.0;
KN_add_obj_linear_struct(kc, 1, &indexVar, &coef);
indexVar1 = 1; indexVar2 = 1; coef = 1.0;
KN_add_obj_quadratic_struct(kc, 1, &indevVar1, &indexVar2, &coef);

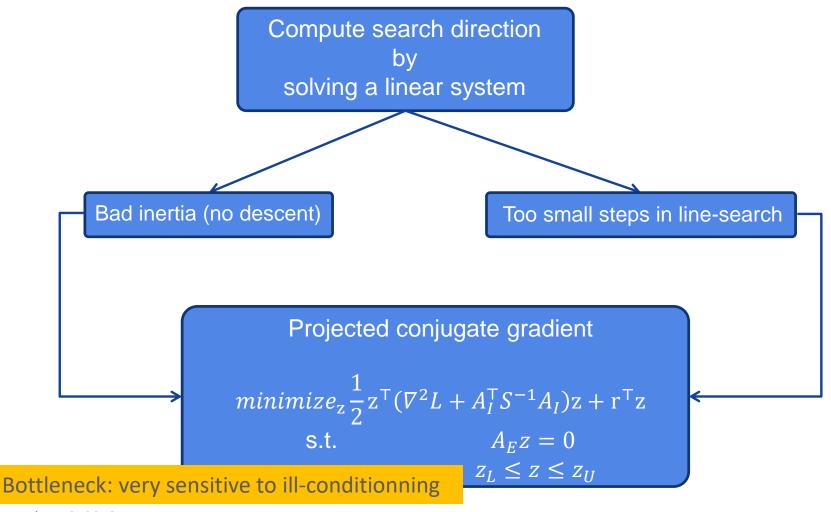
NEW KNITRO 11.0 API – PERFORMANCE

▲ Comparing old API and new API on some large QCQP models


Problem	#nnzJ	#nnzH	Old API (solve time)	New API (solve time)
qcqp1000-1nc	5,591	83,872	33.27	27.41
qcqp1000-2c	63,139	142,386	20.19	9.20
qcqp1000-2nc	63,139	131,114	17.71	8.38
qcqp1500-1c	180,041	438,989	1322.30	393.09
qcqp1500-1nc	180,041	409,820	230.93	330.52
qcqp500-3c	5,685	125,086	16.30	0.71
qcqp500-3nc	5,686	125,086	17.79	0.72
qcqp750-2c	10,792	281,514	56.37	2.21
qcqp750-2nc	10,792	281,514	55.37	2.25

PRECONDITIONER

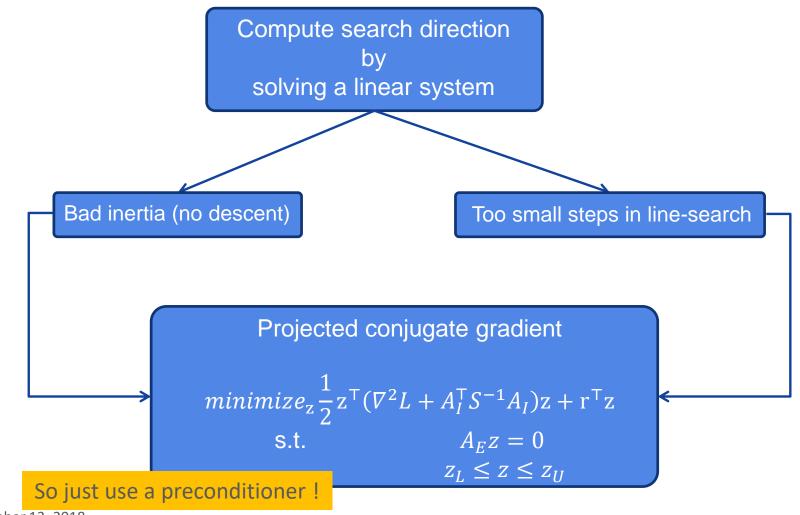
PRECONDITIONING IN KNITRO


△ Fallback step in projected conjugate gradient (PCG) with Knitro's interior point

Artelys OPTIMIZATION SOLUTIONS

PRECONDITIONING IN KNITRO

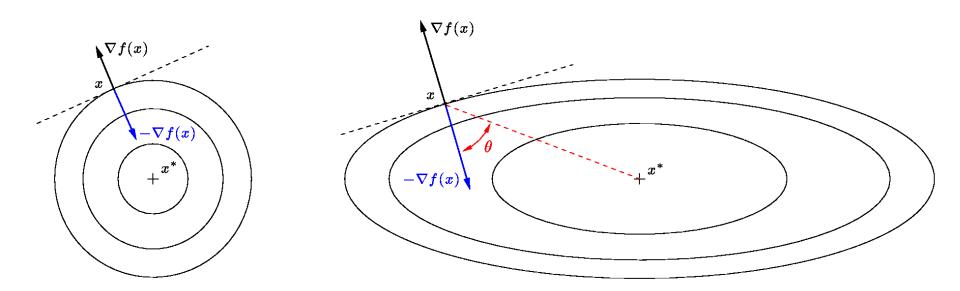
△ Fallback step in projected conjugate gradient (PCG) with Knitro's interior point



Artelys

OPTIMIZATION SOLUTIONS

PRECONDITIONING IN KNITRO

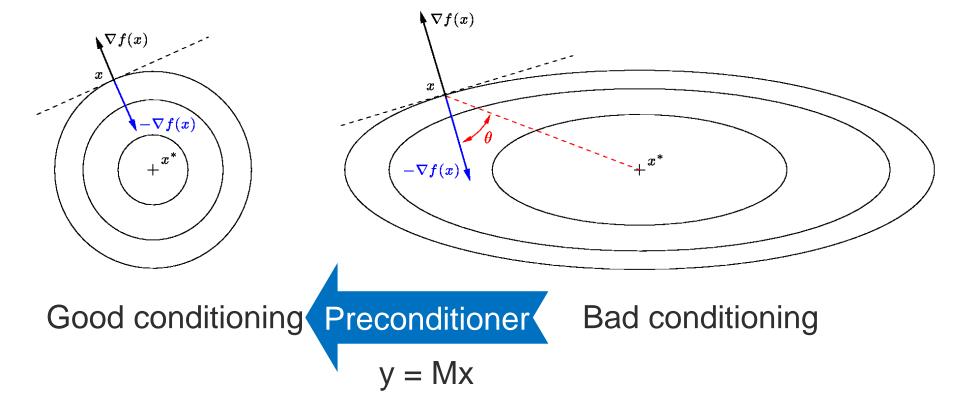

△ Fallback step in projected conjugate gradient (PCG) with Knitro's interior point

September 12, 2018

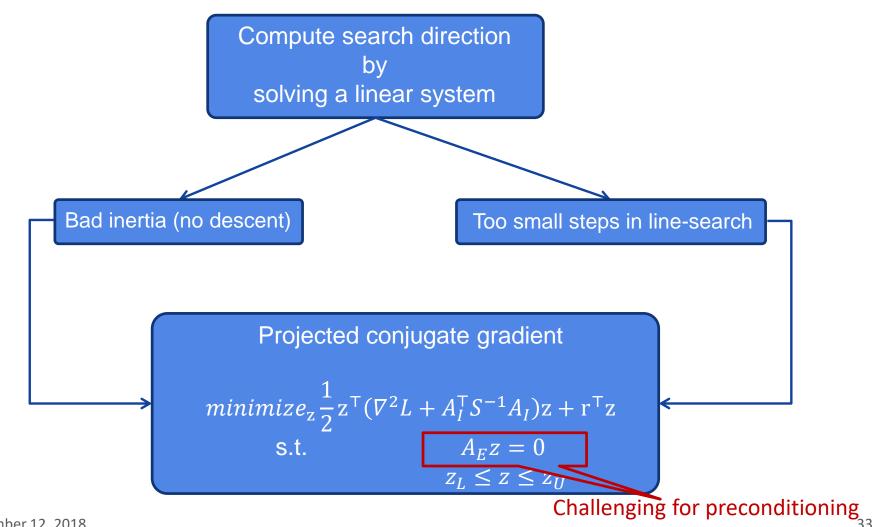
Artelys OPTIMIZATION SOLUTIONS

CONDITIONING

Good conditioning


Bad conditioning

▲ Artelys


CONDITIONING

▲ Artelys

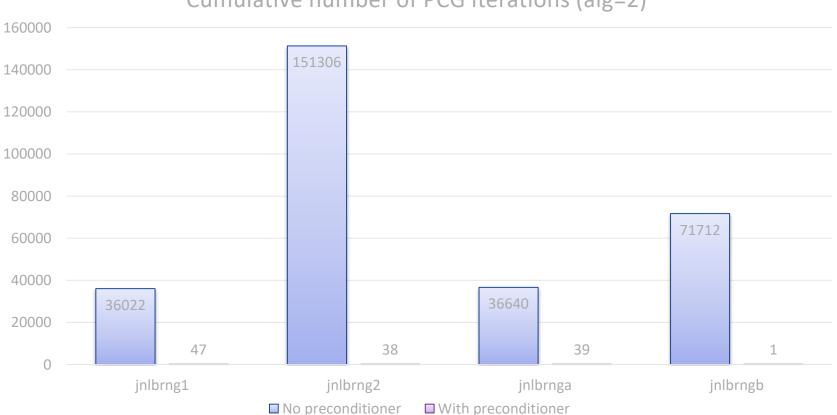
Fallback step in projected conjugate gradient (PCG) with Knitro's interior point 1

September 12, 2018

Artelys OPTIMIZATION SOLUTIONS

Δ Incomplete Choleski factorization (*icfs* module) $\nabla_{xx}^2 L + A_I^T S^{-1} \Lambda A_I \approx LL^T$

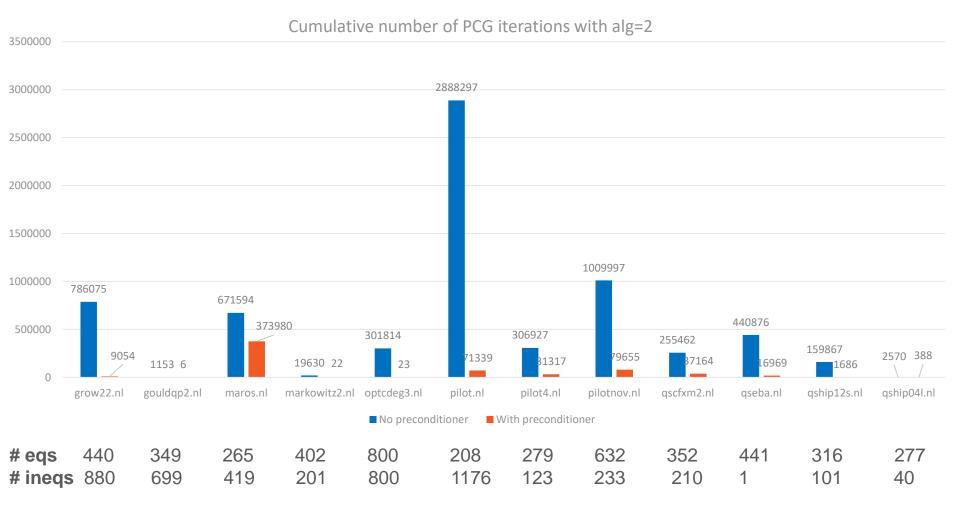
Steps to transform PCG direction so that $A_E z = 0$


1) Compute $\tilde{\mathbf{r}} \coloneqq L^{-1}r$

Artelys OPTIMIZATION SOLUTIONS

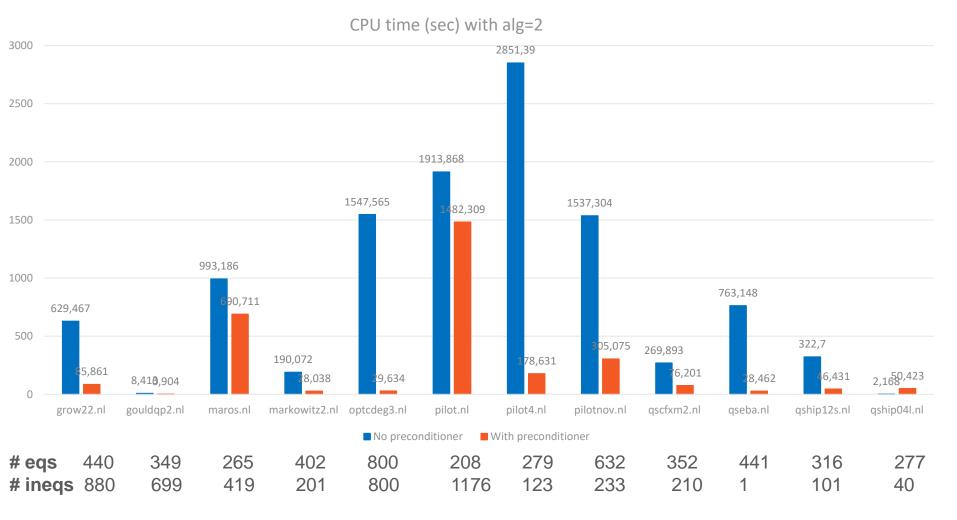
- 2) Form the dense matrix $B := L^{-1}A_E^{\top}$
- 3) Compute $C := B^{\top}B$
- 4) Solve $Cw = B^{\top}\tilde{r}$
- 5) Compute $\tilde{z} = \tilde{r} Bw$
- 6) Backsolve $z = L^{-\top}\tilde{z}$

New Knitro options


cg_precond (0 or 1) cg_pmem (density of the incomplete Cholesky factorization) ▲ Nonlinear programs with inequality constraints only (alg=2, Knitro PCG)

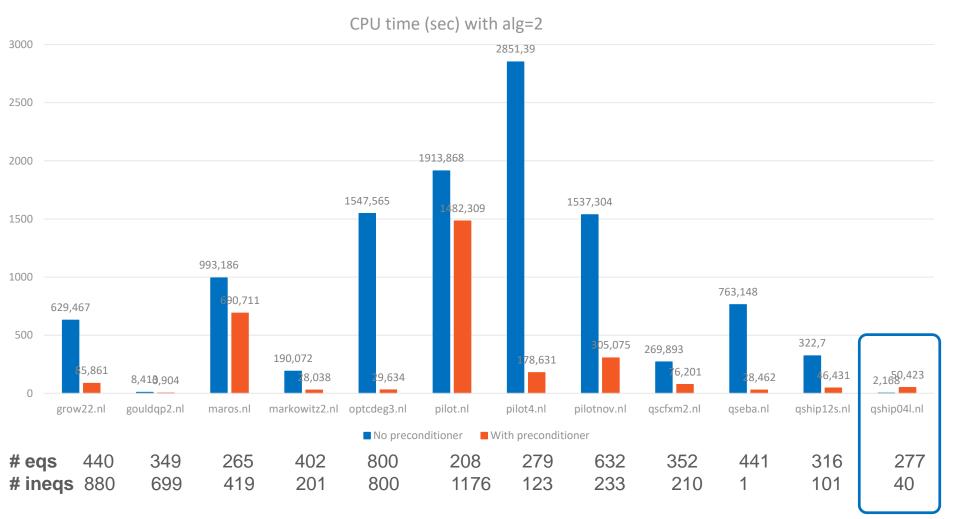
Cumulative number of PCG iterations (alg=2)

▲ Artelys


▲ Nonlinear programs with equality constraints (alg=2, Knitro PCG)

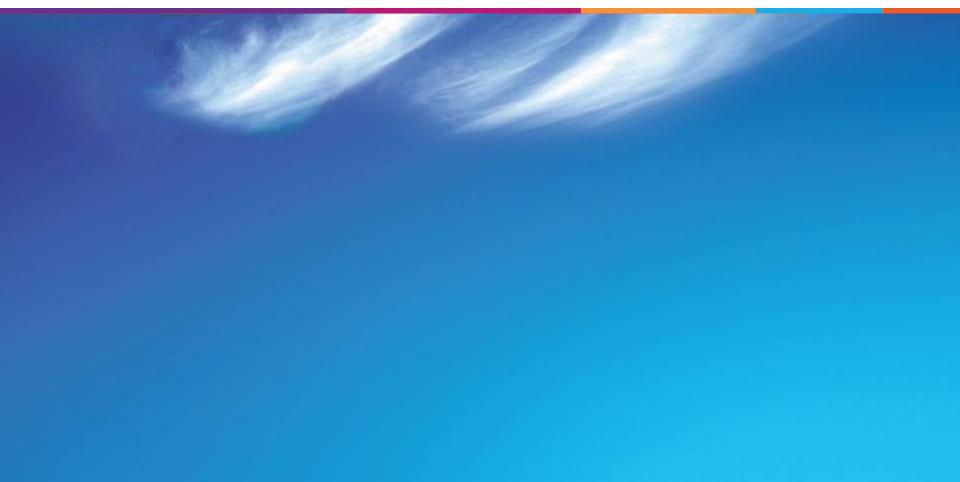
September 12, 2018

Artelys


▲ Nonlinear programs with equality constraints (alg=2, Knitro PCG)

September 12, 2018

▲ Artelys


▲ Nonlinear programs with equality constraints (alg=2, Knitro PCG)

September 12, 2018

▲ Artelys

LINEAR SOLVERS

Artelys OPTIMIZATION SOLUTIONS LINEAR SOLVER OPTIONS IN ARTELYS KNITRO

- A Knitro algorithms need to solve sparse symmetric indefinite linear systems, Ax=b, where A and b depends on the iteration
 - Although the factorization is unique, each solver uses a different algorithm to compute it (multifrontal/supernodal; pivoting; etc.)
 - The choice of the linear solver can change the number of iterations taken to solve a problem, and sometimes even the return status
 - 1 There is no linear solver best for all problems

parallel

- Artelys Knitro 11.0 allows the use of two more parallel linear solvers
 - HSL MA27 sequential
 - HSL MA57 sequential
 - MKL PARDISO parallel
 - HSL MA86
 - HSL MA97 parallel; bit-compatible (always give the same answer)

Artelys OPTIMIZATION SOLUTIONS LINEAR SOLVER OPTIONS IN ARTELYS KNITRO

- ▲ MA57 performs well for small and medium size problems
- ▲ ...but it might have no chance in the large scale
 - Problem MSK_STEP3

Number of variables	55,163
Number of constraints	108,911
Number of nonzeros in Jacobian	54,330,672
Number of nonzeros in Hessian	3,361,333

MA57 : out of memory

	4 threads	8 threads	16 threads	30 threads
MKLPARDISO				
# of iterations	90	90	90	90
Total program time (secs)	4704.27100 (14239.626	3646.25830 (18465.613	3158.46362 (27331.607	3156.07690 (49937.773
	CPU time)	CPU time)	CPU time)	CPU time)
KKT Factorization	3168.19702 / 96	2104.03540 / 96	1592.80664 / 96	1589.04285 / 96
time/count				
MA86				
# of iterations	90	90	90	90
Total program time (secs)	3363.03809 (11535.405	2370.03833 (14391.964	2111.79712 (23614.680	2265.83179 (47518.672
	CPU time)	CPU time)	CPU time)	CPU time)
KKT Factorization	2689.55811 / 90	1726.85120 / 90	1461.42456 / 90	1609.26416 / 90
time/count				
September 12, 2018				40

4 Artelys

OPTIMIZATION SOLUTIONS

Your turn!

Try it and let us know what you think...

September 12, 2018

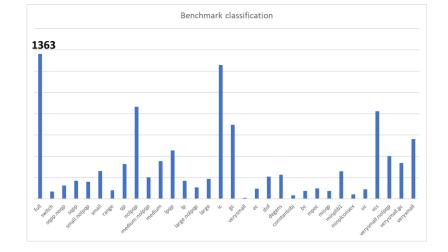
www.artelys.com

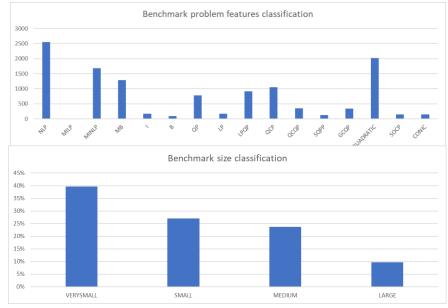
BENCHMARK

BENCHMARK IMPROVEMENT

△ Old benchmark overview :

OPTIMIZATION SOLUTIONS


1363 instances


▲ Artelys

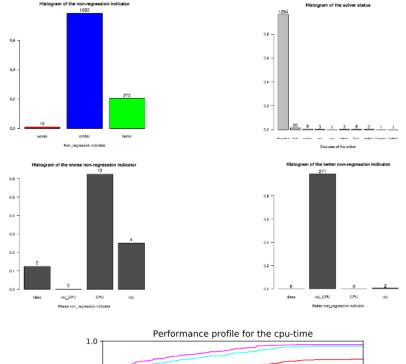
- Classified along 40 labels
- Through text lists format : not userfriendly
 - \mapsto to add tests
 - \vdash to add labels, modify them, ...

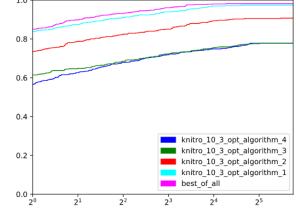
△ Current status :

- 5000+ instances, 50+ labels
- Categorical labels (small/medium/large); problem features (MINLP/QCQP/...)
- Standard benchmarks included
 - └→ Mittelmann
 - → GlobalLib-GAMS, MINLPLib2
 - → Pglib-opf (for OPF)
- Database format (Excel..)

TEST INTEGRATION

New tests integration process :


Daily continuous integration


OPTIMIZATION SOLUTIONS

- → Non-regression tests
- └→ Comparison to a reference run
- → In terms of status, obj, cpu, #iters
- Daily tests report

▲ Artelys

- → Number of regressions
- └→ Classified regression table
- → Trends in the improvement of cpu, obj
- → Performance profiles in terms of cputime / number of iterations
- Deployment and run on the cluster
 - → Use all available resources
 - → 1363 instances benchmark is ran in 1h

